Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-4-Hydroxy-N'-[(2-hydroxynaph-thalen-1-yl)methylene]benzohydrazide

Ji-Chun Cui, Qian-Xiu Pan, Han-Dong Yin* and Yan-Ling Qiao

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@lcu.edu.cn

Received 14 April 2007; accepted 17 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.073; data-to-parameter ratio = 12.2.

The title molecule, $C_{18}H_{14}N_2O_3$, adopts a *trans* configuration with respect to the C=N double bond. The naphthalene system and the benzene ring make a dihedral angle of 30.3 (3)°. In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds result in the formation of two-dimensional layers parallel to the *bc* plane.

Related literature

Recently, we have reported some organotin(IV) complexes with the Schiff base *o*-vanillin-2-thiophenoylhydrazone (Yin & Chen, 2006).

Experimental

Crystal data $C_{18}H_{14}N_2O_3$ $M_r = 306.31$

Monoclinic, $P2_1/c$ a = 14.702 (8) Å

b = 9.793 (5) Å	
c = 10.505 (6) Å	
$\beta = 104.936 \ (8)^{\circ}$	
V = 1461.4 (14) Å ³	
Z - 4	

Data collection

ons
$\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 208 parameters $wR(F^2) = 0.073$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.14 \text{ e } \text{ Å}^{-3}$ 2533 reflections $\Delta \rho_{min} = -0.13 \text{ e } \text{ Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^{i}$	0.82	1.87	2.681 (2)	169
$N1 - H1 \cdots O3^{ii}$	0.86	2.22	3.020 (3)	155
Commentation and and (i)		3. (3)	13 - 11	

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2232).

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Yin, H. D. & Chen, S. W. (2006). J. Organomet. Chem. 691, 3103-3108.

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.33 \times 0.15 \times 0.13$ mm

T = 293 (2) K

supplementary materials

Acta Cryst. (2007). E63, o2633 [doi:10.1107/81600536807019101]

(E)-4-Hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide

J.-C. Cui, Q.-X. Pan, H.-D. Yin and Y.-L. Qiao

Comment

Recently, we have reported some organotin(IV) complexes with Schiff base of *o*-vanillin-2-thiophenoylhydrazone (Yin, Chen, 2006). As an extension of our work on the structural characterization of Schiff base compounds, the title compound, (I), is reported here (Fig. 1).

In the title compound, (I), the C8=N2 bond length of 1.280 (2) Å conforms to the value for a double bond, while the C1—N1 bond [1.367 (2) Å] and N1—N2 bond [1.366 (2) Å] (Table 1) are greater than the value for a double bond and less than the value for a single bond because of conjugation effects in the molecule. The dihedral angle between the benzene ring and bicycle is 30.3 (3) Å.

The occurrence of O—H…O hydrogen bonds results in the formation of infinite chains which are linked by N—H…O hydrogen bonds, forming two-dimensional layers parallel to the bc plane (Table 2 and Fig. 2).

Experimental

The title compound was synthesized by the reaction of 2-hydroxynaphthaldehyde (5 mmol) with 4-hydroxybenzoylhydrazide (5 mmol). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

All H atoms were placed in geometrically idealized positions (N—H, O—H and C—H of 0.86, 0.82 and 0.93 Å, respectively) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Figures

Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Fig. 2. Crystal packing of the title complex.

(E)-4-Hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide

Crystal data	
$C_{18}H_{14}N_2O_3$	$F_{000} = 640$
$M_r = 306.31$	$D_{\rm x} = 1.392 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 14.702 (8) Å	Cell parameters from 1267 reflections
b = 9.793 (5) Å	$\theta = 2.5 - 25.1^{\circ}$
c = 10.505 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 104.936 \ (8)^{\circ}$	T = 293 (2) K
$V = 1461.4 (14) \text{ Å}^3$	Block, colourless
Z = 4	$0.33\times0.15\times0.13~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2533 independent reflections
Radiation source: fine-focus sealed tube	1429 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.059$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 17$
$T_{\min} = 0.969, \ T_{\max} = 0.988$	$k = -11 \rightarrow 10$
6669 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0083P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.045$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.073$	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.00	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
2533 reflections	Extinction correction: none
208 parameters	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y N1 0.78273 (11) 0.0416 (5) 0.63202 (17) 0.93917 (17) H10.7969 0.5977 1.0172 0.050* N2 0.84010 (12) 0.0397 (5) 0.72366 (17) 0.89997 (17) 01 0.68675 (9) 0.64966 (15) 0.73723 (15) 0.0510(4) O2 0.45522 (10) 0.21350 (15) 0.97122 (14) 0.0605 (5) H2 0.4170 0.1872 0.9043 0.091* O3 0.85922 (9) 0.90098 (14) 0.73316(13) 0.0495 (4) H3 0.8434 0.7657 0.074* 0.8315 C1 0.70159 (14) 0.5978(2)0.8476(2)0.0392 (6) C2 0.63889 (13) 0.4983(2)0.8849(2)0.0368 (5) C3 0.56692 (14) 0.4444 (2) 0.7848 (2) 0.0434 (6) H3A 0.5605 0.4730 0.6985 0.052* C4 0.3497 (2) 0.50499 (14) 0.8104 (2) 0.0469 (6) H4 0.4573 0.3152 0.7419 0.056* C5 0.51353 (14) 0.3055 (2) 0.9387 (2) 0.0428 (6) C6 0.58525 (14) 0.3580(2) 1.0384 (2) 0.0495 (6) H6 0.5922 0.059* 0.3287 1.1245 C7 1.0119 (2) 0.0455 (6) 0.64653 (14) 0.4531(2)H70.6941 0.4876 1.0807 0.055* C8 0.92587 (14) 0.9656 (2) 0.0382 (6) 0.7381 (2) H8 0.9492 0.6893 1.0431 0.046* 0.9178 (2) C9 0.98642 (14) 0.8313 (2) 0.0348 (5) C10 0.95021 (14) 0.9103 (2) 0.8059(2) 0.0375 (6) 0.7607(2) C11 1.00636 (16) 1.0041 (2) 0.0453 (6) H11 0.9806 1.0571 0.6868 0.054* C12 1.09888 (15) 1.0176 (2) 0.0462 (6) 0.8251 (2) H12 1.1354 1.0811 0.7948 0.055* C13 1.14085 (15) 0.9381 (2) 0.9367 (2) 0.0406 (6) C14 1.08425 (14) 0.8449 (2) 0.9857 (2) 0.0360 (5) C15 1.12880 (14) 0.7691 (2) 1.0987 (2) 0.0460 (6) H15 1.0939 0.7062 1.1326 0.055* C16 1.22179 (15) 0.7860(2)1.1592 (2) 0.0544 (7) H16 1.2489 0.7350 1.2340 0.065*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C17	1.27718 (16)	0.8783 (3)	1.1110 (2)	0.0593 (7)
H17	1.3407	0.8887	1.1531	0.071*
C18	1.23707 (15)	0.9526 (2)	1.0020 (2)	0.0528 (7)
H18	1.2737	1.0143	0.9696	0.063*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0396 (11)	0.0534 (12)	0.0293 (11)	-0.0086 (10)	0.0044 (9)	0.0055 (9)
N2	0.0376 (11)	0.0443 (12)	0.0355 (11)	-0.0053 (9)	0.0067 (9)	-0.0028 (9)
01	0.0445 (9)	0.0691 (12)	0.0359 (10)	-0.0018 (8)	0.0040 (8)	0.0075 (9)
O2	0.0614 (11)	0.0722 (12)	0.0414 (10)	-0.0287 (9)	0.0014 (8)	0.0013 (9)
O3	0.0477 (10)	0.0600 (11)	0.0369 (9)	0.0007 (8)	0.0038 (8)	0.0072 (8)
C1	0.0366 (13)	0.0455 (15)	0.0346 (14)	0.0088 (12)	0.0075 (11)	-0.0031 (12)
C2	0.0311 (12)	0.0431 (14)	0.0342 (13)	0.0024 (11)	0.0048 (10)	-0.0034 (11)
C3	0.0410 (13)	0.0569 (16)	0.0305 (13)	-0.0004 (12)	0.0063 (11)	0.0040 (12)
C4	0.0415 (14)	0.0603 (17)	0.0332 (15)	-0.0044 (12)	-0.0011 (11)	-0.0051 (12)
C5	0.0388 (14)	0.0477 (16)	0.0385 (15)	-0.0047 (12)	0.0036 (11)	-0.0011 (13)
C6	0.0494 (15)	0.0635 (17)	0.0313 (14)	-0.0106 (13)	0.0024 (11)	0.0022 (12)
C7	0.0379 (14)	0.0604 (17)	0.0320 (14)	-0.0071 (12)	-0.0020 (11)	-0.0054 (12)
C8	0.0428 (14)	0.0428 (14)	0.0268 (13)	0.0028 (11)	0.0048 (10)	0.0012 (11)
С9	0.0409 (13)	0.0326 (13)	0.0309 (13)	-0.0014 (11)	0.0091 (11)	-0.0054 (10)
C10	0.0435 (14)	0.0407 (15)	0.0283 (13)	0.0037 (12)	0.0091 (11)	-0.0037 (11)
C11	0.0604 (16)	0.0457 (15)	0.0300 (13)	-0.0003 (13)	0.0122 (12)	0.0044 (11)
C12	0.0542 (15)	0.0456 (16)	0.0426 (15)	-0.0083 (12)	0.0190 (13)	-0.0017 (12)
C13	0.0442 (14)	0.0418 (15)	0.0375 (14)	0.0016 (12)	0.0139 (11)	-0.0031 (12)
C14	0.0405 (13)	0.0368 (14)	0.0302 (13)	0.0005 (11)	0.0084 (11)	-0.0041 (11)
C15	0.0436 (15)	0.0493 (15)	0.0429 (15)	-0.0014 (12)	0.0070 (11)	0.0017 (12)
C16	0.0439 (15)	0.0637 (18)	0.0494 (16)	0.0061 (13)	0.0006 (12)	0.0051 (14)
C17	0.0385 (15)	0.078 (2)	0.0580 (19)	-0.0011 (14)	0.0072 (13)	-0.0002 (15)
C18	0.0450 (15)	0.0649 (18)	0.0502 (17)	-0.0114 (13)	0.0154 (13)	-0.0030 (14)

Geometric parameters (Å, °)

1.367 (2)	C8—C9	1.452 (3)
1.366 (2)	С8—Н8	0.9300
0.8600	C9—C10	1.393 (3)
1.280 (2)	C9—C14	1.438 (3)
1.233 (2)	C10-C11	1.397 (3)
1.347 (2)	C11—C12	1.361 (3)
0.8200	C11—H11	0.9300
1.362 (2)	C12—C13	1.411 (3)
0.8200	C12—H12	0.9300
1.462 (3)	C13—C18	1.411 (3)
1.383 (3)	C13—C14	1.417 (3)
1.390 (3)	C14—C15	1.410 (3)
1.374 (3)	C15—C16	1.361 (3)
0.9300	С15—Н15	0.9300
1.390 (3)	C16—C17	1.396 (3)
	1.367 (2) 1.366 (2) 0.8600 1.280 (2) 1.233 (2) 1.347 (2) 0.8200 1.362 (2) 0.8200 1.462 (3) 1.383 (3) 1.390 (3) 1.374 (3) 0.9300 1.390 (3)	1.367 (2) $C8-C9$ $1.366 (2)$ $C8-H8$ 0.8600 $C9-C10$ $1.280 (2)$ $C9-C14$ $1.233 (2)$ $C10-C11$ $1.347 (2)$ $C11-C12$ 0.8200 $C11-H11$ $1.362 (2)$ $C12-C13$ 0.8200 $C12-H12$ $1.462 (3)$ $C13-C18$ $1.383 (3)$ $C13-C14$ $1.390 (3)$ $C15-C16$ 0.9300 $C15-H15$ $1.390 (3)$ $C16-C17$

C4—H4	0.9300	С16—Н16	0.9300
C5—C6	1.380 (3)	C17—C18	1.357 (3)
C6—C7	1.372 (3)	С17—Н17	0.9300
С6—Н6	0.9300	C18—H18	0.9300
С7—Н7	0.9300		
C1—N1—N2	116.33 (18)	C10—C9—C14	118.9 (2)
C1—N1—H1	121.8	C10—C9—C8	120.39 (19)
N2—N1—H1	121.8	C14—C9—C8	120.7 (2)
C8—N2—N1	120.63 (18)	O3—C10—C9	122.9 (2)
С5—О2—Н2	109.5	O3—C10—C11	115.8 (2)
С10—О3—Н3	109.5	C9—C10—C11	121.4 (2)
O1—C1—N1	118.1 (2)	C12-C11-C10	119.9 (2)
O1—C1—C2	123.7 (2)	C12—C11—H11	120.1
N1—C1—C2	118.1 (2)	C10-C11-H11	120.1
C7—C2—C3	117.7 (2)	C11—C12—C13	121.8 (2)
C7—C2—C1	124.9 (2)	C11—C12—H12	119.1
C3—C2—C1	117.4 (2)	C13—C12—H12	119.1
C4—C3—C2	121.4 (2)	C12—C13—C18	121.1 (2)
С4—С3—Н3А	119.3	C12—C13—C14	119.0 (2)
С2—С3—НЗА	119.3	C18—C13—C14	119.8 (2)
C3—C4—C5	120.1 (2)	C15—C14—C13	117.10 (19)
C3—C4—H4	119.9	C15—C14—C9	123.9 (2)
C5—C4—H4	119.9	C13—C14—C9	119.0 (2)
O2—C5—C6	118.0 (2)	C16—C15—C14	121.5 (2)
O2—C5—C4	123.4 (2)	C16—C15—H15	119.3
C6—C5—C4	118.7 (2)	C14—C15—H15	119.3
C7—C6—C5	120.8 (2)	C15—C16—C17	121.3 (2)
С7—С6—Н6	119.6	C15—C16—H16	119.4
С5—С6—Н6	119.6	С17—С16—Н16	119.4
C6—C7—C2	121.2 (2)	C18—C17—C16	119.1 (2)
С6—С7—Н7	119.4	С18—С17—Н17	120.5
С2—С7—Н7	119.4	С16—С17—Н17	120.5
N2—C8—C9	119.3 (2)	C17—C18—C13	121.2 (2)
N2—C8—H8	120.3	C17—C18—H18	119.4
С9—С8—Н8	120.3	C13—C18—H18	119.4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2···O1 ⁱ	0.82	1.87	2.681 (2)	169
N1—H1···O3 ⁱⁱ	0.86	2.22	3.020 (3)	155
$C_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	2/2 (11) + 2/2 + 1/2			

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) x, -y+3/2, z+1/2.

Fig. 2